Farmer Perception and Demand for Pesticide in Rice Cultivation of Sri Lanka

T.P. Munaweera J.A.U.P. Jayasinghe

Research Report No: 212

November 2017

Hector Kobbekaduwa Agrarian Research and Training Institute
114, Wijerama Mawatha
Colombo 07
Sri Lanka

First Published: 2017
EXECUTIVE SUMMARY

Chemical pesticides are widely used across the globe in the management of pest and diseases in agricultural production. However, there is an increasing concern about the adverse effects associated with this use on public health and the environment. Even though the negative externalities associated with pesticides are evident, farmers use pesticides at increasing trend because marginal increase in pesticide use still appears to be profitable to farmers compared with other alternative pest and disease control methods. Paddy farmers in the country also use and misuse pesticides without paying much attention to adverse effects associated with it. Since rice cultivation is important to the country in terms of economic and social perspective, future sustainability of paddy farming has become a major concern.

The major objective of this study is to assess the pesticide usage and farmer perception on pesticides (insecticides, weedicides and fungicides) in rice sector by analysing economic and non-economic determinants of adoption and level of pesticide use decision on rice farmers in Sri Lanka. In this study determinants of adoption and level of pesticide use are explored using a comprehensive data set collected from 240 randomly selected rice farmers from selected areas in the Anuradhapura, Ampara, Matara and Kurunegala districts.

This study employs the cross sectional Double Hurdle Model that describes demand decisions on pesticide arising from two hurdles that have to be overcome for positive demand to be observed. The first of the two hurdles is the decision to participate in the market and the second is the decision on the quantity to purchase. Probit procedure was employed for the adoption stage and Tobit procedure for the level of use stage. The advantage of using Double-Hurdle Model is it allows separate analysis of what determines the adoption and level of pesticide use.

The study found that most commonly used type of pesticide in rice cultivation in Sri Lanka irrespective of the agro-ecological and type of irrigation variation is herbicides followed by insecticides and fungicides. About 77 percent of farmers apply herbicide prior to emergence of weeds as a routine practice starting from the day of planting. Around 33 percent of farmers use more than the recommended dosage as they believe that
recommendations and prescriptions given in the pesticide product label are not appropriate.

DH model analysis results broadly reveal differences in the key drivers of the adoption and use decisions. Household size, farming experience, type of irrigation, training received related to pest control and extent under cultivation are the common variables that have significant effect on the decision on adopting or non-adopting the insecticides and herbicides. On the other hand, age, sex, extent cultivated, farm gate price, tenurial status, type of irrigation and training related to pest control can be identified as common variables affecting the quantity of active ingredients of insecticides and herbicides applied.

Overall, the findings highlight the complexity of the issue, with different variables influencing decisions about whether to adopt pesticides at all, and if so the right amount. The insights generated should be of value to agricultural extension agents, researchers and policymakers. They reveal that decisions about pesticide adoption and use are complex, depending on a range of variables. Institutions seeking to curb the overuse of pesticide or to encourage adoption of alternative methods of pest control need to use multiple strategies to address the key variables.

Most of the issues at the user’s level are associated with lack of awareness, poor attitudes and behaviours of farmers. Thus, urgent efforts should go into persuading farmers to handle and use pesticides correctly via effective awareness campaigns through all possible means including print and electronic media. Based on the influential factors identified government and law enforcing authorities should develop and implement policies to regulate the pesticide use in Sri Lanka.
LIST OF CONTENTS

FOREWORD

v

EXECUTIVE SUMMARY

iii

LIST OF CONTENTS

v

LIST OF TABLES

vii

LIST OF FIGURES

viii

ABBREVIATIONS

ix

CHAPTER ONE

Introduction

1.1 Background of the Study

1.2 Importance of the Study

1.3 Objectives of the Study

1.3.1 General Objective

1.3.2 Specific Objectives

CHAPTER TWO

Methodology

2.1 Site Selection and Sample Size

2.2 Theoretical Framework

CHAPTER THREE

Socio-economic Profile and Farmer Perception on Pesticide Usage

3.1 General Demographic Information of Sample Farmers
3.2 Farmers’ Attitude on Decision on Pesticide Application..............Error! Bookmark not defined.
3.3 Determining Factors for Pesticide SelectionError! Bookmark not defined.
3.4 Source of Information on Pesticide.......Error! Bookmark not defined.

CHAPTER FOUR
Determinants of Pesticide Use in Rice Production

4.1 Determinants of Insecticide Use in Maha SeasonError! Bookmark not defined.
4.2 Determinants of Herbicide Use in Maha SeasonError! Bookmark not defined.
4.3 Determinants of Insecticide Use in Yala SeasonError! Bookmark not defined.
4.4 Determinants of Herbicide Use in Yala SeasonError! Bookmark not defined.

CHAPTER FIVE
Pesticide Usage in Rice Cultivation

5.1 Type and Properties of Pesticides Used by Rice Farmers ..........Error! Bookmark not defined.
5.2 Frequency of Pesticide Application.......Error! Bookmark not defined.
5.3 Safety and Storage Practice ......................Error! Bookmark not defined.
5.4 Handling Re-entry and Harvesting IntervalsError! Bookmark not defined.
5.5 Pesticide Storage and Disposal Practices by FarmersError! Bookmark not defined.
5.6 Safety Precautions in Pesticide HandlingError! Bookmark not defined.
5.7 Use of Information on the Pesticide LabelError! Bookmark not defined.

CHAPTER SIX
Conclusion and Recommendations

6.1 Major Findings........................................Error! Bookmark not defined.
6.2 Recommendations .................................Error! Bookmark not defined.

REFERENCES
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Table Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Variable Definitions</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Primary Employment of Sample Households</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>Farmers’ Decision on Pesticide Application</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Motivating Factors when Purchasing Pesticide</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Source of Information on Pesticides</td>
<td>18</td>
</tr>
<tr>
<td>3.5</td>
<td>Reliability of the Information Source</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Probit and Tobit Parameter Estimates of Insecticide Use in</td>
<td></td>
</tr>
</tbody>
</table>
Maha Season

Table 4.2: Probit and Tobit Parameter Estimates of Herbicide Use in Maha Season

Table 4.3: Probit and Tobit Parameter Estimates of Insecticide Use in Yala Season

Table 4.4: Probit and Tobit Parameter Estimates of Herbicide Use in Yala Season

Table 5.1: Frequency of Pesticide Applications in Maha and Yala Seasons

Table 5.2: Re-entry Period as Reported by Rice Farmers

Table 5.3: Farmers' Practices Regarding Pesticide Storage

Table 5.4: Farmers' Practices Regarding Disposal of Empty Containers

Table 5.5: Safety Practices in Sprayer Use

Table 5.6: Safety Practices in Pesticide Application

Table 5.7: Distribution of Farmers Based on the Information Given on Pesticide Label

LIST OF FIGURES

Page No.

Figure 3.1: Age Distribution of Sample Farmers

Figure 3.2: Level of Education among Sample Farmers

Figure 3.3: Household Size Distribution among Sample Farming Households

Figure 3.4: Land Size Distribution among Sample Households

vi
Figure 5.1: No. of Pesticides and Active Ingredients Used in Paddy Cultivation 29
Figure 5.2: Classification of Pesticide According to WHO Hazardous Group 30